Topological vacuum bubbles by anyon braiding
نویسندگان
چکیده
According to a basic rule of fermionic and bosonic many-body physics, known as the linked cluster theorem, physical observables are not affected by vacuum bubbles, which represent virtual particles created from vacuum and self-annihilating without interacting with real particles. Here we show that this conventional knowledge must be revised for anyons, quasiparticles that obey fractional exchange statistics intermediate between fermions and bosons. We find that a certain class of vacuum bubbles of Abelian anyons does affect physical observables. They represent virtually excited anyons that wind around real anyonic excitations. These topological bubbles result in a temperature-dependent phase shift of Fabry-Perot interference patterns in the fractional quantum Hall regime accessible in current experiments, thus providing a tool for direct and unambiguous observation of elusive fractional statistics.
منابع مشابه
Systematic distillation of composite Fibonacci anyons using one mobile quasiparticle
A topological quantum computer should allow intrinsically fault-tolerant quantum computation, but there remains uncertainty about how such a computer can be implemented. It is known that topological quantum computation can be implemented with limited quasiparticle braiding capabilities, in fact using only a single mobile quasiparticle, if the system can be properly initialized by measurements. ...
متن کاملUniversal Quantum Computation with Abelian Anyon Models
We consider topological quantum memories for a general class of abelian anyon models defined on spin lattices. These are non-universal for quantum computation when restricting to topological operations alone, such as braiding and fusion. The effects of additional non-topological operations, such as spin measurements, are studied. These are shown to allow universal quantum computation, while sti...
متن کاملSkein Theory and Topological Quantum Registers: Braiding Matrices and Topological Entanglement Entropy of Non-abelian Quantum Hall States
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read–Rezayi state whose effective theory is the SU(2)K Chern–Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we prop...
متن کاملAnyons and Lowest Landau Level Anyons
Intermediate statistics interpolating from Bose statistics to Fermi statistics are allowed in two dimensions. This is due to the particular topology of the two dimensional configuration space of identical particles, leading to non trivial braiding of particles around each other. One arrives at quantum many-body states with a multivalued phase factor, which encodes the anyonic nature of particle...
متن کاملTopological quantum compiling
A method for compiling quantum algorithms into specific braiding patterns for non-Abelian quasiparticles described by the so-called Fibonacci anyon model is developed. The method is based on the observation that a universal set of quantum gates acting on qubits encoded using triplets of these quasiparticles can be built entirely out of three-stranded braids three-braids . These three-braids can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016